Correction PC3-A2: Identification des métaux

<u>Réponse à la problématique</u>: A partir des documents fournis, il faut utiliser les propriétés de la matière pour identifier la nature des différents métaux.

Document 03 :	Caractéristiques	physique i	de la matière
Document 05 .	caracter istiques	pilysique	ac ia illatici c

Matière (état)	ρ (g/mL)	ρ (kg/m³)	d : Densité	Température de fusion (°C)	Aimantation
Papier (solide)	0,75	750	0,75		aucune
Éthanol (liquide)	0,8	800	0,8	-114	aucune
Huile (liquide)	0,9	900	0,9		aucune
Eau pure (li- quide) à 20°C	1	1000	1	0	aucune
Aluminium	2,7	2700	2,7	660	aucune
Zinc	7,1	7100	7,1	420	aucune
Fer	7,9	7900	7,9	1535	forte
Cuivre	8,9	8900	8,9	1083	aucune
Argent	10,5	10500	10,5	961	aucune
Or	19,3	19300	19,3	1064	aucune

Document 04 : Tensions délivrées par quelques piles (solution de vinaigre)

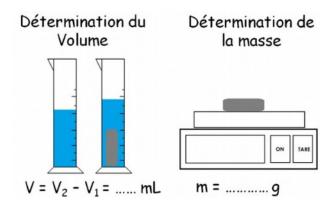
• $U_{\text{alu zinc}} \approx 0.45 \text{ V}$ • $U_{\text{cuivre fer}} \approx 0.9 \text{ V}$ • $U_{\text{cuivre alu}} \approx 0.4 \text{ V}$ • $U_{\text{cuivre zinc}} \approx 0.9 \text{ V}$

Première expérience : On approche l'aimant des différents métaux.

Résultat : seul l'échantillon « B » est attiré

<u>Conclusion</u>: L'échantillon « B » est composé de fer, car dans le tableau, c'est le seul métal qui présente une aimantation.

A ce stade, il reste maintenant à découvrir la nature des échantillons « A » et « C »



Deuxième expérience: On va maintenant utiliser la masse volumique

Comme le terme masse volumique l'indique, il faut mesurer pour chacun des échantillons deux grandeurs physiques.

- La masse à l'aide d'une balance.
- Le volume à l'aide d'une éprouvette, la masse volumique des métaux est supérieure à celle de l'eau.
- Il faut ensuite faire le rapport entre la masse mesurée en gramme et le volume : $\rho = \frac{m}{V}$.
- Rq: Il est intéressant de présenter les résultats dans un tableau.

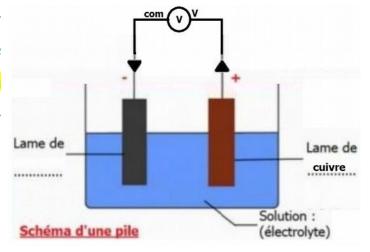
Schéma de la partie expérimentale

Échantillon	A	В	С
Masse en gramme (g)			
Volume en millilitre (ml)			
$\frac{\textit{masse}}{\textit{volume}}$ (eng/mL)	2,6		<mark>6,7</mark>
Matière	Très proche de l'alumi- nium		Très proche d'un zinc et non aimanté

Document : 05 : Caractéristiques physique de la matière

Matière (état)	<mark>ρ (g/mL)</mark>	ρ (kg/m³)	d : Densité	Température de fusion (°C)
Eau pure (liquide) à 20°C	1_	1000	1	0
Aluminium	<mark>2,7</mark>	2700	2,7	660
<mark>Zinc</mark>	<mark>7,1</mark>	7100	7,1	420
Fer	<mark>7,9</mark>	7900	7,9	1535
Cuivre	8,9	8900	8,9	1083
Argent	10,5	10500	10,5	961
Or	19,3	19300	19,3	1064

Conclusion finale:


• Échantillon « A » : Aluminium

• Échantillon « B » : fer

• Échantillon « C » : Zinc

Remarque: D'après le document 4, la réalisation d'une pile avec le cuivre comme électrode de référence aurait permis grâce à la mesure de la tension produite, de distinguer les différents métaux.

